Interrelations/cross talk between transcellular transport function and paracellular tight junctional properties in lung epithelial and endothelial barriers.
نویسندگان
چکیده
In this synopsis of a symposium at EB2007, we start with an overview of noise and impedance analyses that have been applied to various epithelial barriers. Noise analysis yields specific information about ion channels and their regulation in epithelial and endothelial barriers. Impedance analysis can yield information about apical and basolateral membrane conductances and paracellular conductance of both epithelial and endothelial barriers. Using a morphologically based model, impedance analysis has been used to assess changes in apical and basolateral membrane surface areas and dimensions of the lateral intercellular space. Impedance analysis of an in vitro airway epithelial barrier under normal, nucleotide-stimulated, and cigarette smoke-exposed conditions yielded information on how activation and inhibition of secretion occur in airway epithelial cells. Similarly, impedance analysis of primary rat alveolar epithelial cell monolayer model under control and EGTA exposure conditions indicate that EGTA causes decreases in resistances of tight junctional routes as well as apical and basolateral cell membranes without causing much change in cell capacitances. In a stretch-caused injury model of alveolar epithelium, transcellular ion transport function and paracellular permeability of solute transport appear to be differentially regulated. Finally, inhibition of caveolae-mediated transcytosis in lung endothelium led to disruption of paracellular routes, increasing the physical dimension and permeability of tight junctional region. These data together demonstrate the cross talk between transcellular and paracellular transport (function and routes) of lung epithelial and endothelial barriers. Mechanistic (e.g., signaling cascades) information on such cross talk remain to be determined.
منابع مشابه
Modeling the Effect of Stretch and Plasma Membrane Tension on Na+-k+-atpase Activity in Cyclic Stretch of Human Lung Cells Induces an Acidification and Promotes Bacterial Ajp -lung Cellular and Molecular Physiology
[PDF] [Full Text] [Abstract] , July 1, 2004; 97 (1): 269-276. J Appl Physiol S. S. Kay, A. M. Bilek, K. C. Dee and D. P. Gaver III a model of pulmonary airway reopening Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in [PDF] [Full Text] [Abstract] , August 1, 2004; 31 (2): 200-208. Am. J. Respir. Cell Mol. Biol. J. L. Fisher, I. Levitan and S. S. M...
متن کاملBrain barriers: Crosstalk between complex tight junctions and adherens junctions
Unique intercellular junctional complexes between the central nervous system (CNS) microvascular endothelial cells and the choroid plexus epithelial cells form the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB), respectively. These barriers inhibit paracellular diffusion, thereby protecting the CNS from fluctuations in the blood. Studies of br...
متن کاملThe role of claudins in determining paracellular charge selectivity.
Tight junctions create regulated barriers in the paracellular space between epithelial cells, including those of the airway and alveolus. Junctions vary widely throughout the body in their electrical resistance and, to some extent, in their ionic charge selectivity. Paracellular differences complement transcellular transport to define overall water, ion, and solute movements. A large family of ...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 293 3 شماره
صفحات -
تاریخ انتشار 2007